Quantitative estimates for interpolated operators by multidimensional method
نویسندگان
چکیده
منابع مشابه
Quantitative Estimates for the Finite Section Method
The finite section method is a classical scheme to approximate the solution of an infinite system of linear equations. We present quantitative estimates for the rate of the convergence of the finite section method on weighted `-spaces. Our approach uses recent results from the theory of Banach algebras of matrices with off-diagonal decay. Furthermore, we demonstrate that Banach algebra theory p...
متن کاملOperators for Multidimensional Aggregate Data
Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited. ABSTRACT In this chapter the author proposes the different approaches for defining operators able to manipulate this multidimensional structure. In particular, he initially considers operators for multidimensional aggregate data which extend relatio...
متن کاملQuadrature Estimates for Multidimensional Integrals
We prove estimates for the error in the most straightforward discrete approximation to the integral of a compactly supported function of n variables. The methods use Fourier analysis and interpolation theory, and also make contact with classical lattice point estimates. We also prove error estimates for the approximation of the integral over an interval by the trapezoidal rule and the midpoint ...
متن کاملA Trace Formula for Multidimensional Schrödinger Operators
We prove multidimensional analogs of the trace formula obtained previously for one-dimensional Schrödinger operators. For example, let V be a continuous function on [0, 1] ⊂ R . For A ⊂ {1, . . . , ν}, let −∆A be the Laplace operator on [0, 1] with mixed Dirichlet-Neumann boundary conditions φ(x) = 0, xj = 0 or xj = 1 for j ∈ A, ∂φ ∂xj (x) = 0, xj = 0 or xj = 1 for j / ∈ A. Let |A| = number of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Revista Matemática Complutense
سال: 1999
ISSN: 1988-2807,1139-1138
DOI: 10.5209/rev_rema.1999.v12.n1.17193